Electromagnetic Steklov eigenvalues: approximation analysis

نویسندگان

چکیده

We continue the work of Camano et al . [ SIAM J. Math. Anal. 49 (2017) 4376–4401] on electromagnetic Steklov eigenvalues. The authors recognized that in general eigenvalues do not correspond to spectrum a compact operator and hence proposed modified eigenvalue problem with desired properties. present article considers original problem. cast problems as for holomorphic function A (?). construct “test function” T (?) so ( ? ) is weakly )-coercive all suitable , i.e. )* perturbation coercive operator. construction relies decomposition space into subspaces an apt sign change each subspace. For approximation analysis, we apply framework T-compatible Galerkin approximations. problem, prove convenient commuting projection operators imply T-compatibility convergence. require satisfy additional commutator property which concerns tangential trace. existence such remain open questions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Principal Eigenvalues for Periodic Parabolic Steklov Problems

LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...

متن کامل

Two-Parameter Eigenvalues Steklov Problem involving the p-Laplacian

We study the existence of eigenvalues for a two parameter Steklov eigenvalues problem with weights. Moreover, we prove the simplicity and the isolation results of the principal eigenvalue. Finally, we obtain the continuity and the differentiability of this principal eigenvalue. AMS Subject Classifications: 35J60, 35B33.

متن کامل

Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues

This is the first in a series of two papers aiming to establish sharp spectral asymptotics for Steklov type problems on planar domains with corners. In the present paper we focus on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We pr...

متن کامل

A Posteriori Error Analysis for Nonconforming Approximation of Multiple Eigenvalues

In this paper we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, C. Padra, Appl. Numer. Math., 2012, for the approximation of Laplace eigenvalue problem with Crouzeix–Raviart non-conforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and ...

متن کامل

Error Analysis for the Finite Element Approximation of Transmission Eigenvalues

In this paper we consider the transmission eigenvalue problem corresponding to acoustic scattering by a bounded isotropic inhomogeneous object in two dimensions. This is a non self-adjoint eigenvalue problem for a quadratic pencil of operators. In particular we are concerned with theoretical error analysis of a finite element method for computing the eigenvalues and corresponding eigenfunctions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Numerical Analysis

سال: 2021

ISSN: ['0764-583X', '1290-3841']

DOI: https://doi.org/10.1051/m2an/2020075